АЛГЕБРА 10-11 КЛАСС. УГЛУБЛЕННЫЙ УРОВЕНЬ (ФОП СОО)

Рабочая программа по АЛГЕБРЕ на уровень СОО. БАЗОВЫЙ УРОВЕНЬ

Программа является приложением к ООП СОО, срок реализации которой 2023 - 2024 г. г.

Составлена согласно требованиям 

Федерального государственного образовательного стандарта среднего   общего образования, утвержденным приказом Министерства образования и науки Российской Федерации № 413 от 17 мая 2012 г., с  измен.  ред. Приказа Минобрнауки России от 29.12.2014 № 1645, с изменениями ред Приказа Минпросвещения России от 12.08.2022 № 732)

Федеральной образовательной программы среднего общего образования (утверждена приказом Минпросвещения России от 18.05.2023 № 371)

Для учащихся 10- 11 классов

На изучение учебного курса «Алгебра и начала математического анализа» отводится 272 часа: в 10 классе – 136 часов (4 часа в неделю), в 11 классе – 136 часов (4 часа в неделю). ‌‌

СОДЕРЖАНИЕ ОБУЧЕНИЯ


10 КЛАСС


Числа и вычисления

Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени и его свойства.

Степень с рациональным показателем и её свойства, степень с действительным показателем.

Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.

Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства

Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.

Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.

Преобразования числовых выражений, содержащих степени и корни.

Иррациональные уравнения. Основные методы решения иррациональных уравнений.

Показательные уравнения. Основные методы решения показательных уравнений.

Преобразование выражений, содержащих логарифмы.

Логарифмические уравнения. Основные методы решения логарифмических уравнений.

Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.

Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.

Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.

Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.

Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.

Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.Хочу такой сайт

Начала математического анализа

Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.

Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.

Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.

Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.

Множества и логика

Множество, операции над множествами и их свойства. Диаграммы Эйлера–Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.

11 КЛАСС


Числа и вычисления

Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее – НОД) и наименьшее общее кратное (далее НОК), остатков по модулю, алгоритма Евклида для решения задач в целых числах.

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни n-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.

Уравнения и неравенства

Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.

Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.

Основные методы решения показательных и логарифмических неравенств.

Основные методы решения иррациональных неравенств.

Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.

Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.

Функции и графики

График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.

Тригонометрические функции, их свойства и графики.

Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона-Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

РП алгебра 10-11 класс углубленный(ФОП СОО) Документ подписан электронной подписью Серийный номер 726242342903868691666490759959119263676517201251 Директор/Заведующий Воложанина Елена Николаевна Дата подписания документа 15.09.2023 06:03:07 (скачать) (посмотреть) (текст документа)
Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».